direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×C23.31D4, C4⋊C4⋊2C12, (C6×Q8)⋊3C4, C6.23C4≀C2, (C2×Q8)⋊2C12, C22⋊C8.2C6, (C2×C6).11Q16, C22⋊Q8.1C6, (C2×C12).444D4, (C2×C6).23SD16, C23.35(C3×D4), C22.2(C3×Q16), C6.30(C23⋊C4), (C22×C6).150D4, C22.2(C3×SD16), C6.15(Q8⋊C4), C2.C42.8C6, (C22×C12).385C22, (C3×C4⋊C4)⋊4C4, C2.5(C3×C4≀C2), (C2×C4).8(C2×C12), (C2×C4).96(C3×D4), C2.5(C3×C23⋊C4), (C3×C22⋊C8).4C2, C2.3(C3×Q8⋊C4), (C2×C12).175(C2×C4), (C22×C4).20(C2×C6), (C3×C22⋊Q8).11C2, C22.36(C3×C22⋊C4), (C2×C6).123(C22⋊C4), (C3×C2.C42).24C2, SmallGroup(192,134)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C23.31D4
G = < a,b,c,d,e,f | a3=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=bcd, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bcde3 >
Subgroups: 162 in 80 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, Q8, C23, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C24, C2×C12, C2×C12, C3×Q8, C22×C6, C2.C42, C22⋊C8, C22⋊Q8, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C2×C24, C22×C12, C22×C12, C6×Q8, C23.31D4, C3×C2.C42, C3×C22⋊C8, C3×C22⋊Q8, C3×C23.31D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, SD16, Q16, C2×C12, C3×D4, C23⋊C4, Q8⋊C4, C4≀C2, C3×C22⋊C4, C3×SD16, C3×Q16, C23.31D4, C3×C23⋊C4, C3×Q8⋊C4, C3×C4≀C2, C3×C23.31D4
(1 25 45)(2 26 46)(3 27 47)(4 28 48)(5 29 41)(6 30 42)(7 31 43)(8 32 44)(9 19 33)(10 20 34)(11 21 35)(12 22 36)(13 23 37)(14 24 38)(15 17 39)(16 18 40)
(2 38)(4 40)(6 34)(8 36)(10 30)(12 32)(14 26)(16 28)(18 48)(20 42)(22 44)(24 46)
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 41)(24 42)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 5)(2 8 38 36)(3 39)(4 34 40 6)(7 35)(9 13)(10 16 30 28)(11 31)(12 26 32 14)(15 27)(17 47)(18 42 48 20)(19 23)(21 43)(22 46 44 24)(25 29)(33 37)(41 45)
G:=sub<Sym(48)| (1,25,45)(2,26,46)(3,27,47)(4,28,48)(5,29,41)(6,30,42)(7,31,43)(8,32,44)(9,19,33)(10,20,34)(11,21,35)(12,22,36)(13,23,37)(14,24,38)(15,17,39)(16,18,40), (2,38)(4,40)(6,34)(8,36)(10,30)(12,32)(14,26)(16,28)(18,48)(20,42)(22,44)(24,46), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(2,8,38,36)(3,39)(4,34,40,6)(7,35)(9,13)(10,16,30,28)(11,31)(12,26,32,14)(15,27)(17,47)(18,42,48,20)(19,23)(21,43)(22,46,44,24)(25,29)(33,37)(41,45)>;
G:=Group( (1,25,45)(2,26,46)(3,27,47)(4,28,48)(5,29,41)(6,30,42)(7,31,43)(8,32,44)(9,19,33)(10,20,34)(11,21,35)(12,22,36)(13,23,37)(14,24,38)(15,17,39)(16,18,40), (2,38)(4,40)(6,34)(8,36)(10,30)(12,32)(14,26)(16,28)(18,48)(20,42)(22,44)(24,46), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(2,8,38,36)(3,39)(4,34,40,6)(7,35)(9,13)(10,16,30,28)(11,31)(12,26,32,14)(15,27)(17,47)(18,42,48,20)(19,23)(21,43)(22,46,44,24)(25,29)(33,37)(41,45) );
G=PermutationGroup([[(1,25,45),(2,26,46),(3,27,47),(4,28,48),(5,29,41),(6,30,42),(7,31,43),(8,32,44),(9,19,33),(10,20,34),(11,21,35),(12,22,36),(13,23,37),(14,24,38),(15,17,39),(16,18,40)], [(2,38),(4,40),(6,34),(8,36),(10,30),(12,32),(14,26),(16,28),(18,48),(20,42),(22,44),(24,46)], [(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,41),(24,42)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,5),(2,8,38,36),(3,39),(4,34,40,6),(7,35),(9,13),(10,16,30,28),(11,31),(12,26,32,14),(15,27),(17,47),(18,42,48,20),(19,23),(21,43),(22,46,44,24),(25,29),(33,37),(41,45)]])
57 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12N | 12O | 12P | 12Q | 12R | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
57 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | + | ||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | D4 | D4 | SD16 | Q16 | C3×D4 | C3×D4 | C4≀C2 | C3×SD16 | C3×Q16 | C3×C4≀C2 | C23⋊C4 | C3×C23⋊C4 |
kernel | C3×C23.31D4 | C3×C2.C42 | C3×C22⋊C8 | C3×C22⋊Q8 | C23.31D4 | C3×C4⋊C4 | C6×Q8 | C2.C42 | C22⋊C8 | C22⋊Q8 | C4⋊C4 | C2×Q8 | C2×C12 | C22×C6 | C2×C6 | C2×C6 | C2×C4 | C23 | C6 | C22 | C22 | C2 | C6 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 1 | 2 |
Matrix representation of C3×C23.31D4 ►in GL4(𝔽73) generated by
8 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 64 | 0 |
0 | 0 | 0 | 64 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 22 | 72 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
6 | 67 | 0 | 0 |
6 | 6 | 0 | 0 |
0 | 0 | 63 | 54 |
0 | 0 | 72 | 10 |
72 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 57 | 27 |
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,64,0,0,0,0,64],[1,0,0,0,0,1,0,0,0,0,1,22,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[6,6,0,0,67,6,0,0,0,0,63,72,0,0,54,10],[72,0,0,0,0,1,0,0,0,0,72,57,0,0,0,27] >;
C3×C23.31D4 in GAP, Magma, Sage, TeX
C_3\times C_2^3._{31}D_4
% in TeX
G:=Group("C3xC2^3.31D4");
// GroupNames label
G:=SmallGroup(192,134);
// by ID
G=gap.SmallGroup(192,134);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,344,1683,1522,248,2951]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*c*d*e^3>;
// generators/relations