Copied to
clipboard

G = C3×C23.31D4order 192 = 26·3

Direct product of C3 and C23.31D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C23.31D4, C4⋊C42C12, (C6×Q8)⋊3C4, C6.23C4≀C2, (C2×Q8)⋊2C12, C22⋊C8.2C6, (C2×C6).11Q16, C22⋊Q8.1C6, (C2×C12).444D4, (C2×C6).23SD16, C23.35(C3×D4), C22.2(C3×Q16), C6.30(C23⋊C4), (C22×C6).150D4, C22.2(C3×SD16), C6.15(Q8⋊C4), C2.C42.8C6, (C22×C12).385C22, (C3×C4⋊C4)⋊4C4, C2.5(C3×C4≀C2), (C2×C4).8(C2×C12), (C2×C4).96(C3×D4), C2.5(C3×C23⋊C4), (C3×C22⋊C8).4C2, C2.3(C3×Q8⋊C4), (C2×C12).175(C2×C4), (C22×C4).20(C2×C6), (C3×C22⋊Q8).11C2, C22.36(C3×C22⋊C4), (C2×C6).123(C22⋊C4), (C3×C2.C42).24C2, SmallGroup(192,134)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×C23.31D4
C1C2C22C23C22×C4C22×C12C3×C2.C42 — C3×C23.31D4
C1C22C2×C4 — C3×C23.31D4
C1C2×C6C22×C12 — C3×C23.31D4

Generators and relations for C3×C23.31D4
 G = < a,b,c,d,e,f | a3=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=bcd, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bcde3 >

Subgroups: 162 in 80 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, Q8, C23, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C24, C2×C12, C2×C12, C3×Q8, C22×C6, C2.C42, C22⋊C8, C22⋊Q8, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C2×C24, C22×C12, C22×C12, C6×Q8, C23.31D4, C3×C2.C42, C3×C22⋊C8, C3×C22⋊Q8, C3×C23.31D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, SD16, Q16, C2×C12, C3×D4, C23⋊C4, Q8⋊C4, C4≀C2, C3×C22⋊C4, C3×SD16, C3×Q16, C23.31D4, C3×C23⋊C4, C3×Q8⋊C4, C3×C4≀C2, C3×C23.31D4

Smallest permutation representation of C3×C23.31D4
On 48 points
Generators in S48
(1 25 45)(2 26 46)(3 27 47)(4 28 48)(5 29 41)(6 30 42)(7 31 43)(8 32 44)(9 19 33)(10 20 34)(11 21 35)(12 22 36)(13 23 37)(14 24 38)(15 17 39)(16 18 40)
(2 38)(4 40)(6 34)(8 36)(10 30)(12 32)(14 26)(16 28)(18 48)(20 42)(22 44)(24 46)
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 41)(24 42)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 5)(2 8 38 36)(3 39)(4 34 40 6)(7 35)(9 13)(10 16 30 28)(11 31)(12 26 32 14)(15 27)(17 47)(18 42 48 20)(19 23)(21 43)(22 46 44 24)(25 29)(33 37)(41 45)

G:=sub<Sym(48)| (1,25,45)(2,26,46)(3,27,47)(4,28,48)(5,29,41)(6,30,42)(7,31,43)(8,32,44)(9,19,33)(10,20,34)(11,21,35)(12,22,36)(13,23,37)(14,24,38)(15,17,39)(16,18,40), (2,38)(4,40)(6,34)(8,36)(10,30)(12,32)(14,26)(16,28)(18,48)(20,42)(22,44)(24,46), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(2,8,38,36)(3,39)(4,34,40,6)(7,35)(9,13)(10,16,30,28)(11,31)(12,26,32,14)(15,27)(17,47)(18,42,48,20)(19,23)(21,43)(22,46,44,24)(25,29)(33,37)(41,45)>;

G:=Group( (1,25,45)(2,26,46)(3,27,47)(4,28,48)(5,29,41)(6,30,42)(7,31,43)(8,32,44)(9,19,33)(10,20,34)(11,21,35)(12,22,36)(13,23,37)(14,24,38)(15,17,39)(16,18,40), (2,38)(4,40)(6,34)(8,36)(10,30)(12,32)(14,26)(16,28)(18,48)(20,42)(22,44)(24,46), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,5)(2,8,38,36)(3,39)(4,34,40,6)(7,35)(9,13)(10,16,30,28)(11,31)(12,26,32,14)(15,27)(17,47)(18,42,48,20)(19,23)(21,43)(22,46,44,24)(25,29)(33,37)(41,45) );

G=PermutationGroup([[(1,25,45),(2,26,46),(3,27,47),(4,28,48),(5,29,41),(6,30,42),(7,31,43),(8,32,44),(9,19,33),(10,20,34),(11,21,35),(12,22,36),(13,23,37),(14,24,38),(15,17,39),(16,18,40)], [(2,38),(4,40),(6,34),(8,36),(10,30),(12,32),(14,26),(16,28),(18,48),(20,42),(22,44),(24,46)], [(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,41),(24,42)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,5),(2,8,38,36),(3,39),(4,34,40,6),(7,35),(9,13),(10,16,30,28),(11,31),(12,26,32,14),(15,27),(17,47),(18,42,48,20),(19,23),(21,43),(22,46,44,24),(25,29),(33,37),(41,45)]])

57 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C···4G4H4I6A···6F6G6H6I6J8A8B8C8D12A12B12C12D12E···12N12O12P12Q12R24A···24H
order12222233444···4446···6666688881212121212···121212121224···24
size11112211224···4881···12222444422224···488884···4

57 irreducible representations

dim111111111111222222222244
type++++++-+
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D4SD16Q16C3×D4C3×D4C4≀C2C3×SD16C3×Q16C3×C4≀C2C23⋊C4C3×C23⋊C4
kernelC3×C23.31D4C3×C2.C42C3×C22⋊C8C3×C22⋊Q8C23.31D4C3×C4⋊C4C6×Q8C2.C42C22⋊C8C22⋊Q8C4⋊C4C2×Q8C2×C12C22×C6C2×C6C2×C6C2×C4C23C6C22C22C2C6C2
# reps111122222244112222444812

Matrix representation of C3×C23.31D4 in GL4(𝔽73) generated by

8000
0800
00640
00064
,
1000
0100
0010
002272
,
72000
07200
0010
0001
,
72000
07200
00720
00072
,
66700
6600
006354
007210
,
72000
0100
00720
005727
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,64,0,0,0,0,64],[1,0,0,0,0,1,0,0,0,0,1,22,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1],[72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[6,6,0,0,67,6,0,0,0,0,63,72,0,0,54,10],[72,0,0,0,0,1,0,0,0,0,72,57,0,0,0,27] >;

C3×C23.31D4 in GAP, Magma, Sage, TeX

C_3\times C_2^3._{31}D_4
% in TeX

G:=Group("C3xC2^3.31D4");
// GroupNames label

G:=SmallGroup(192,134);
// by ID

G=gap.SmallGroup(192,134);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,344,1683,1522,248,2951]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*c*d*e^3>;
// generators/relations

׿
×
𝔽